Mobile Communications TCS 455

Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 6

Office Hours:
BKD 3601-7
Tuesday 14:00-16:00
Thursday 9:30-11:30

Announcements

- Read
- Chapter 3: 3.1 - 3.2, 3.5.1, 3.6, 3.7.2
- Posted on the web
- Due date for HW2: Nov 27
- Official version available on Thursday.
- Draft already been posted.
- All graduate students should send an email to me (prapun@siit.tu.ac.th). I need to somehow add your id into the SIIT online lecture note system. In the case that there is some delay to this, I might need to send the files to you via email.

Tessellating Cell Shapes

Hexagonal cells:

- Having largest area for a given distance between the center of a polygon and its farthest perimeter points
- Approximating a circular radiation pattern for an omnidirectional base station antenna and free space propagation

Frequency Reuse ($\mathrm{N}=4, \mathrm{~N}=7$)

- Cluster: a group of N cells use the complete set of available frequencies

Frequency Reuse

- Cluster: a group of N cells using the complete set of available frequencies

Co-channel Interference (N=19)

Method of locating co-channel cells in a cellular system. In this example, $N=19$ (i.e., $I=3, j=2$). (Adapted from [Oet83] © IEEE.)

Hexagon

Area $=6 \times 2 \times\left(\frac{1}{2} \times \frac{\sqrt{3}}{2} R \times \frac{1}{2} R\right)=\frac{3 \sqrt{3}}{2} R^{2} \approx 2.598 R^{2}$

Center-to-center distance (D)

$$
\begin{aligned}
D & =\sqrt{(i \sqrt{3} R)^{2}+(j \sqrt{3} R)^{2}-2(i \sqrt{3} R)(j \sqrt{3} R) \cos \left(120^{\circ}\right)} \\
& =R \sqrt{3\left(i^{2}+j^{2}+i j\right)}=R \sqrt{3 N}
\end{aligned}
$$

Q and N

Co-channel reuse ratio

$$
Q=\frac{D}{R}=\sqrt{3 N} .
$$

Cluster Size (N) Co-channel Reuse Ratio (Q)

$i=1, j=1$	3	3
$i=1, j=2$	7	4.58
$i=0, j=3$	9	5.20
$i=2, j=2$	12	6

SIR

- Frequency reuse \rightarrow co-channel interference
- $K=$ the number of co-channel interfering cells
- The signal-to-interference ratio (S/I or SIR) for a mobile receiver which monitors a forward channel can be expressed as

$$
\operatorname{SIR}=\frac{S}{I}=\frac{S}{\sum_{i=1}^{K} I_{i}}
$$

- $S=$ the desired signal power from the desired base station
- $\mathrm{I}_{\mathrm{i}}=$ the interference power caused by the i th interfering cochannel cell base station.

SIR

- The SIR should be greater than a specified threshold for proper signal operation.
- In the first-generation AMPS system, designed for voice calls, the desired performance threshold is SIR equal to 18 dB .
- For the second-generation digital AMPS system (D-AMPS or IS$54 / 136)$, a threshold of 14 dB is deemed suitable.
- For the GSM system, a range of $7-12 \mathrm{~dB}$, depending on the study done, is suggested as the appropriate threshold.
- Only a relatively small number of nearby interferers need be considered, because of the rapidly decreasing received power as the distance increases.
- In a fully equipped hexagonal-shaped cellular system, there are always six cochannel interfering cells in the first tier.
- Approximation:

$$
\frac{S}{I} \approx \frac{k R^{-\gamma}}{K \times\left(k D^{-\gamma}\right)}=\frac{1}{K}\left(\frac{D}{R}\right)^{\gamma}=\frac{1}{K}(\sqrt{3 N})^{\gamma}
$$

SIR: $N=7$

More accurate calculation...

SIR: $N=3$

Even more accurate calculation...

Improving Coverage and Capacity

- As the demand for wireless service increases, the number of channels assigned to a cell eventually becomes insufficient to support the required number of users.
- At this point, cellular design techniques are needed to provide more channels per unit coverage area.
- Easy!?
$C=\frac{A_{\text {total }}}{A_{\text {cell }}} \times \frac{S}{N}$

Sectoring ($\mathrm{N}=7$)

Figure 3.10 (a) 120° sectoring; (b) 60° sectoring.

Sectoring ($\mathrm{N}=7$)

Figure 3.11 Illustration of how 120° sectoring reduces interference from co-channel cells. Out of the 6 co-channel cells in the first tier, only two of them interfere with the center cell. If omnidirectional antennas were used at each base station, all six co-channel cells would interfere with the center cell.

SIR: N = 3

$$
\frac{S}{I} \approx \frac{1}{K}(\sqrt{3 N})^{\gamma}
$$

$$
\text { Sectoring (} \left.\mathrm{N}=3,60^{\circ}\right) \quad \frac{S}{I} \approx \frac{1}{K}(\sqrt{3 N})^{7}
$$

Sectoring

$$
\frac{S}{I} \approx \frac{1}{K}(\sqrt{3 N})^{\gamma} \quad C=\frac{A_{\text {total }}}{A_{\text {cell }}} \times \frac{S}{N}
$$

- Advantages
- Assuming seven-cell reuse, for the case of 120° sectors, the number of interferers in the first tier is reduced from six to two.
- Disadvantages
- Increase number of antennas at each base station.
- Decrease trunking efficiency due to channel sectoring at the base station.
- The available channels in the cell must be subdivided and dedicated to a specific antenna.

Estimating the number of users

- Trunking
- Allow a large number of users to share the relatively small number of channels in a cell by providing access to each user, on demand, from a pool of available channels.
- Exploit the statistical behavior of users
- Each user is allocated a channel on a per call basis, and upon termination of the call, the previously occupied channel is immediately returned to the pool of available channels.

Common Terms

- Traffic Intensity: Measure of channel time utilization, which is the average channel occupancy measured in Erlangs.
- This is a dimensionless quantity and may be used to measure the time utilization of single or multiple channels.
- Denoted by A.
- Holding Time: Average duration of a typical call. Denoted by $\mathrm{H}=1 / \mu$.
- Blocked Call: Call which cannot be completed at time of request, due to congestion. Also referred to as a lost call.
- Grade of Service (GOS): A measure of congestion which is specified as the probability of a call being blocked (for Erlang B).
- The AMPS cellular system is designed for a GOS of 2% blocking. This implies that the channel allocations for cell sites are designed so that 2 out of 100 calls will be blocked due to channel occupancy during the busiest hour.
- Request Rate: The average number of call requests per unit time. Denoted by λ.

